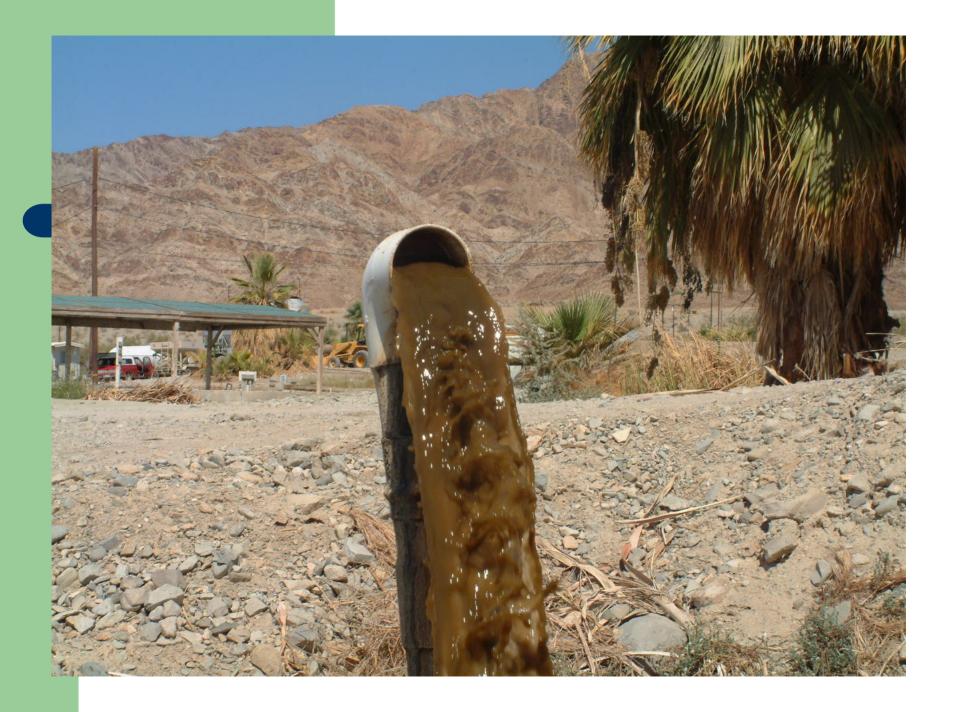


Tilapia production, a growing industry

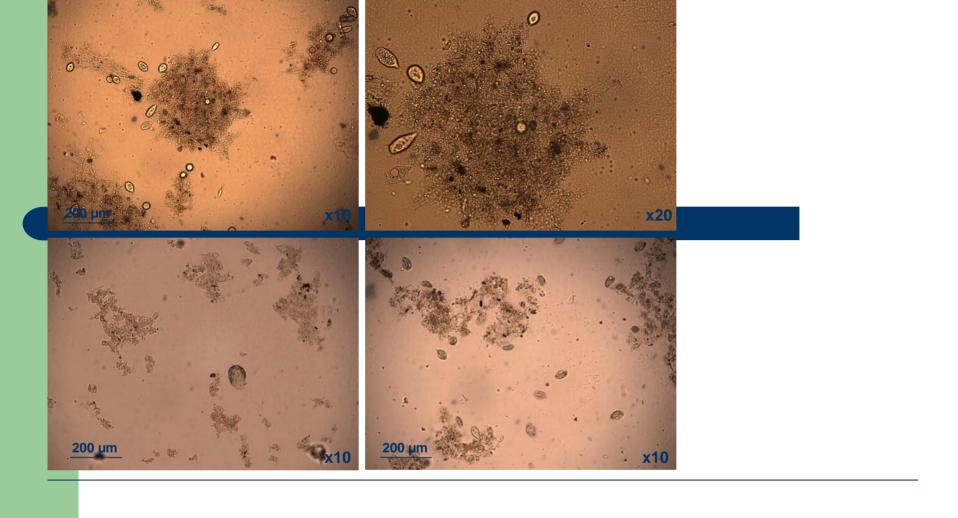
Tilapia, an ideal fish for Biofloc Technology


Fish Biomass

Normally, 20-30 kg/m2 10 times higher than shrimp BFT ponds!

Implications:

- High Biomass 20-30 kg/m3
- High feeding (ca 500 g feed/m3 per day!)
- Very high microbial activity
- High floc volume (20-50 ml/l).
- Very high natural feed storage.
- High levels of feed residues
- Need to drain out daily (or twice daily) excessive sludge.
- Pond constructed to facilitate sludge draining and perfect mixing.
- High and effective aeration: 10-20 hp/1000 m2 pond



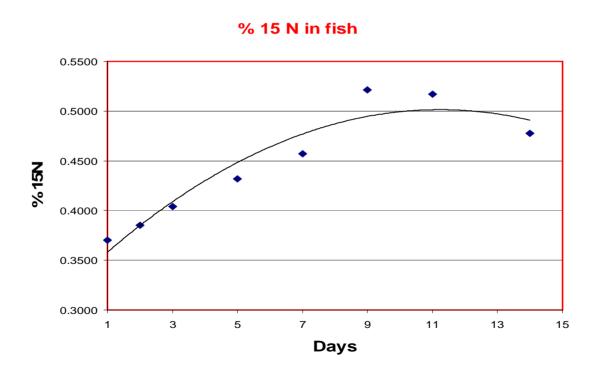
Bioflocs and Floc volume

- Bio flocs are made of bacteria, protozoa, feed residues etc.
- Bioflocs size may reach
- A few mm diameter
- Effectively harvested by tilapia

Bio flocs are made of bacteria, protozoa, etc. Typicaly their diameter is 0.1-2 mm.

Protein Recycling

- Normally, fish or shrimp recover just ~25% of feed protein.
- In bacterial controlled ponds, they eat the protein twice; Once in the feed and then they consume microbial protein. The protein recovery reaches **almost 50%.**


Protein is the most expensive part of the feed.

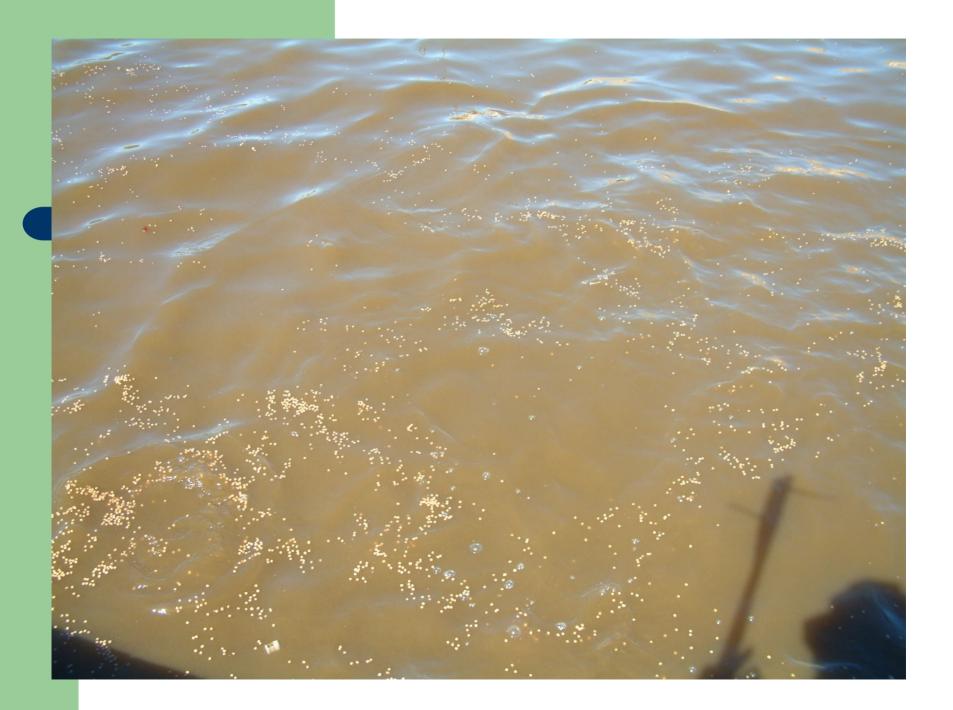
<u>Expt. # 1</u> 51 days	control	BFT
FEED C/N	11.1	<u>16.6</u>
Daily Gain (%)	1.59a	2.0 ^b
FCR	2.62	2.17
PCR	4.38	2.42
(Kg fish/\$US)FEED COST	0.848	0.583
Exp. # 2 (30 days)		•
<u>C/N</u>	11.1	16.6
Daily gain (%)	1.63 ^a	2.22^b
FCR	2.62	2.02
PCR	4.35	2.18
Feed cost	0.848	0.543
(US\$/Kg fish)		

Preparing an 15N tagged bioflocs:

- 1. Prepare large enough batch of biofloc suspension (water + feed, mix & aerate).
- 2. Add ¹⁵N salt.
- 3. Add starch, at a C/N ratio of > 15
- 4. After a few hours, practically all ¹⁵N is in the bioflocs.

Results 1: % ¹⁵N in fish

Residence time of bioflocs


- Bioflocs were taken up by fish and degraded biologically. Yet, the amount of bioflocs stayed almost constant. This implies that new flocs are constantly produced (using the excreted N).
- The residence time of bioflocs was calculated to be around 8 hours. The flocs seem to be a very dynamic system.
- most cells in the flocs are young and active.

Data on feed protein utilization

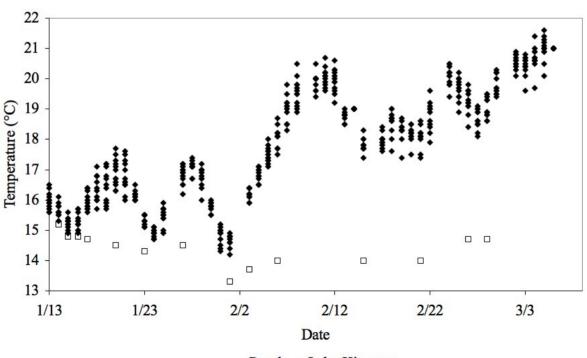
- Conventional fish, shrimp ponds 20-25%
- BFT Tilapia ponds (Avnimelech)
 45%
- BFT Shrimp ponds (McIntosh) 45%
- Closed shrimp tanks (Velasco)
 63%
- BFT shrimp ponds, ¹⁵N study 18-29% of total N consumption (Michele Burford et al.)
- * Tilapia, ¹⁵N Study, flocs supplied about 50% of fish protein requirement. (Avnimelech).

Feed Utilization

- Fish or shrimp growing in BFT systems eat the pellets when applied, but eat bioflocs all the time.
- Confirmed in a work done by Albert Tacon with shrimp.
- Observations with tilapia.
- Effects on lowering of FCR in tilapia production

Fresh results from the field:

- Tilapia fingerlings (120 g) stocked to overwintering facility on January 4, 2011.
- Feeding ~ 1% BW
- On February 18, they weighed 171 g
- Daily growth of 1.16 g/fish
- FCR = 0.5


OVER-WINTERING

Results

Dissolved oxygen: $9 - 10 \text{ mg O}_2/L - \text{Average temperature: } 18 \pm 2^{\circ}\text{C} - \text{C}_2/L - \text{C}$

◆ Ponds □ Lake Kinneret

EFFECT OF WATER EXCHANGE RATE ON PRIMARY

AND SECONDARY INFECTION OF FISH BY STREPTOCOCCUS

	AND SEC	ONDAR I IN	FISH BY STREPTUCUCUS		
		Treatment	Dead fish	Sick fish	Total infected
a)Injected	Control	9 (9)	2 (2)	11
f	ish	BFT	12 (3)	4 (2)	16

a)Noninjected fish

Control	7 (5)	4 (1.5)	11	(4.7)
BFT	1.8 (1.7)	1.3 (1.0)	3	(1.4)

- High water exchange = 0.5l/min per kg fish (700% per day)
- •BFT< Limited water exchange = 10% per day

Conclusions

- Biofloc technology is especially adapted to raise tilapia production up to 20-30 kg/m2.
- This can be done using not too expensive system.
- BFT enables feed recycling, high feed quality and reduced expenses.
- BFT reduces disease.
- The system is friendly and forgiving.
- More research is needed

Thank You

Yoram

Biofloc Technology

A Practical Guide Book
Yoram Avnimelech

Published by

W®RLD
AQUACULTURE
SOCIETY

Biofloc Technology

Y.Avnimelech

A Practical Guide Boo

THE WORLD AQUACULTURE SOCIET